Antibiotic treatment for 6 days versus 12 days in patients with severe cellulitis: a multicentre randomised, double-blind, placebo-controlled, non-inferiority trial

Duncan Rowan Cranendonk¹13, Brent C. Opmeer², Michiel Van Agtmael³, Judith Branger⁴, Kees Brinkman⁵, Andy I.M. Hoepelman⁶, Fanny Lauw⁷, Jan Jelrik Oosterheert⁶, Annemarie Pijlman⁸, Sanjay Sankatsing⁹, Robin Soetekouw¹⁰, Jan Veenstra¹¹, Peter de Vries¹², J.M. Prins¹³, Willem Joost Wiersinga¹¹¹³

¹Academic Medical Center, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands, ²Academic Medical Center, Clinical Epidemiology, Bioinformatics and Biostatistics, Amsterdam, Netherlands, ³VU University Medical Center, Department of Internal Medicine, Amsterdam, Netherlands, ⁴Flevoziekenhuis, Department of Internal Medicine, Almere, Netherlands, ⁵OLVG location East, Department of Internal Medicine, Amsterdam, Netherlands, ⁶University Medical Center Utrecht, Department of Internal Medicine, Utrecht, Netherlands, ⁷MC Slotervaart, Department of Internal Medicine, Amsterdam, Netherlands, ⁸St. Antonius Hospital Utrecht, Department of Internal Medicine, Utrecht, Netherlands, ⁹Diakonessenhuis Utrecht, Department of Internal Medicine, Utrecht, Netherlands, ¹⁰Spaarne Gasthuis Haarlem, Department of Internal Medicine, Haarlem, Netherlands, ¹¹OLVG, location West, Department of Internal Medicine, Amsterdam, Netherlands, ¹²Tergooi - location Hilversum, Department of Internal Medicine, Hilversum, Netherlands, ¹³Academic Medical Center, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam, Netherlands

Background: The recommended antibiotic treatment duration for patients hospitalized with cellulitis is 10-14 days, but this is mainly based on expert recommendation. We investigated whether 6 days of antibiotic treatment is non-inferior to 12 days in patients hospitalized with cellulitis.

Materials/methods: In this randomised, double-blind, placebo-controlled non-inferiority trial, we enrolled in 11 Dutch hospitals adult patients admitted with cellulitis and treated with intravenous flucloxacillin, with optional oral step-down. At day 6 participants who had improved substantially (defined as being afebrile, and having a lower cellulitis severity score) were randomised between additional 6 days of oral flucloxacillin or placebo. Randomisation was stratified by diabetes status and hospital. The primary outcome was cure by day 14 without relapse by day 28. Secondary outcomes included a modified cure assessment and the relapse rate by day 90. The trial was stopped early because of slow recruitment. This trial is registered on ClinicalTrials.gov (NCT02032654).

Results: Between August 26, 2014, and June 29, 2017, 151 of 248 included participants had sufficiently improved at day 6 to be randomised: 77 were allocated to receive 12 days of flucloxacillin, and 74 to receive 6 days of flucloxacillin. In the intention-to-treat analysis 71 and 69 participants, respectively, who took at least one dose of study drug were analyzed. Mean age was 63, 66% was male, 24% had diabetes. After 28 days, 35/71 (49.3%) of participants in the 12-day group and 35/69 (50.7%) in the 6-day group were cured without relapse by day 28 (absolute risk reduction 1.4 percentage points, 95% CI: -14.8 to 17.5). With the modified cure assessment, 53/71 (74.6%) and 49/69 (71.0%) participants in the 12-day and 6-day groups, respectively, were cured without relapse after 28 days (absolute risk reduction of -3.6, 95% CI: -18.1 to 11). After initial cure without relapse, day 90 relapse rates are higher in the 6-day group than in the 12-day group (Figure).
Conclusions: Six days of antibiotic treatment appeared on the short term to be as effective as 12 days of antibiotic treatment. However, patients with a short course of therapy showed significantly faster and more frequent relapses by day 90.

Log rank test
\(p = 0.04 \)