

Practical optimisation of patient doses

What is optimisation?

Optimisation is a balancing act: image quality vs patient dose.

- Dose too low: undiagnostic image, repeat exposure
- Dose too high: diagnostic image (perhaps), but at increased risk to patient
- Dose just right: image quality 'adequate' for diagnosis or treatment planning = optimisation

How can you achieve this in practice?

X-ray equipment

Dental GNs, Chapter 4 covers

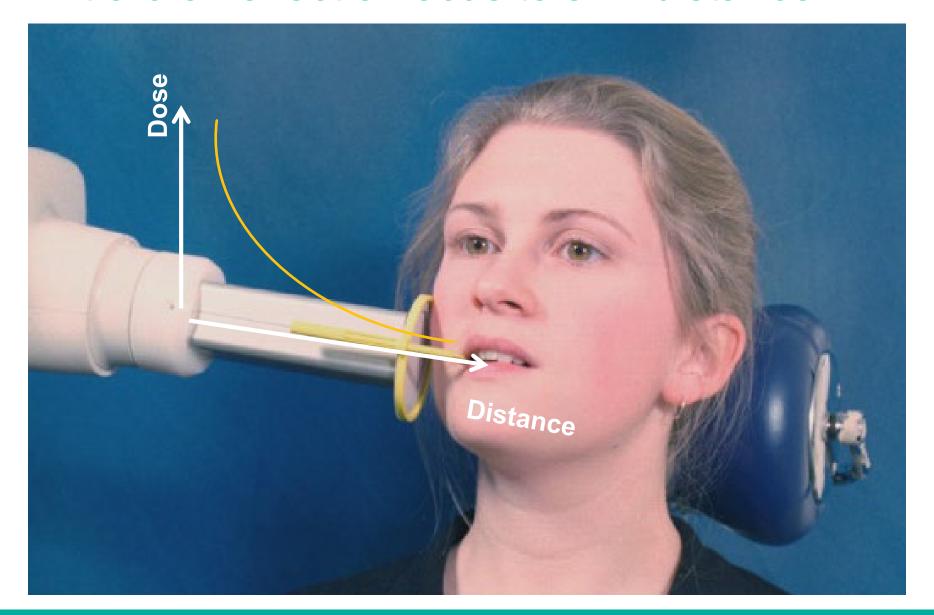
- X-ray equipment and how it affects optimisation
- ancillary equipment and how it affects optimisation
- how equipment should be <u>used</u> to achieve optimisation
- table 4.1 summarises where to find the guidance

Topic	Brief description of requirement	Relevant section of this guidance
Operation of X-ray equipment	Operators to select the most appropriate X-ray equipment, radiographic technique and appropriate protocol (including collimation and field of view where relevant) in order to keep patient dose ALARP; for Intra oral X-ray equipment Hand-held dental X-ray equipment Panoramic and cephalometric equipment Dental CBCT equipment Image receptors	4.3.1 4.3.2 4.3.3 4.3.4 4.3.5
Use of patient contact shielding	Protective aprons and thyroid shields are not recommended for routine use on patients.	4.4
	 Display screens should meet the recommended standard Specially-designed light-boxes should be used to view film radiographs Attention should be paid to the adequacy of the viewing conditions for all dental radiographs or dental CBCT images 	4.2

Intra oral: effect of collimation

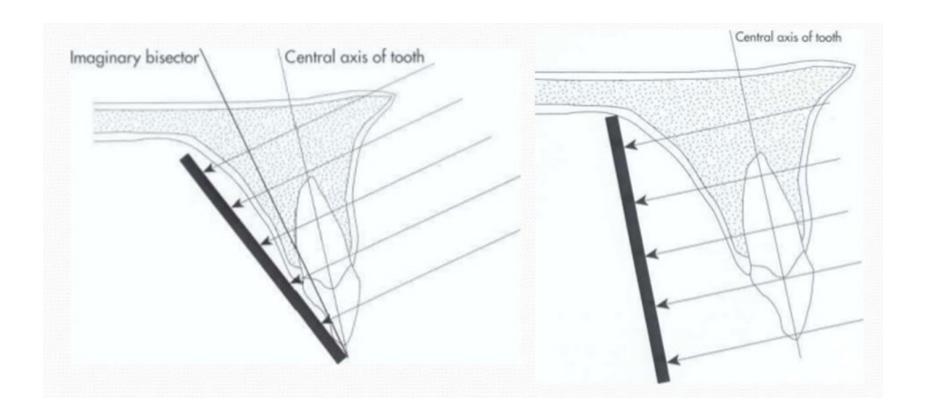
Circular
6 cm diameter
beam area = 28.3 cm²

Rectangular $3.5 \times 4.5 \text{ cm}$ beam area = 15.75 cm^2



Intra oral: effect of collimation

Intra oral: effect of focus to skin distance



Intra oral: effect of technique

Bisecting angle

VS

Paralleling technique

Intra oral: effect of imaging system

Imaging system	3 rd quartile patient entrance dose, mGy* [†]
D-speed film	1.9
E-speed film	1.4
E/F-speed film	1.2
F-speed film	1.3
Computed radiography (CR)	1.1
Direct radiography (DR)	1.0

† Source: PHE-CRCE-59: Dose to patients from dental radiographic X-ray imaging procedures in the UK - 2017 review

^{*}The patient doses were measured at the settings normally used for an adult mandibular molar radiograph

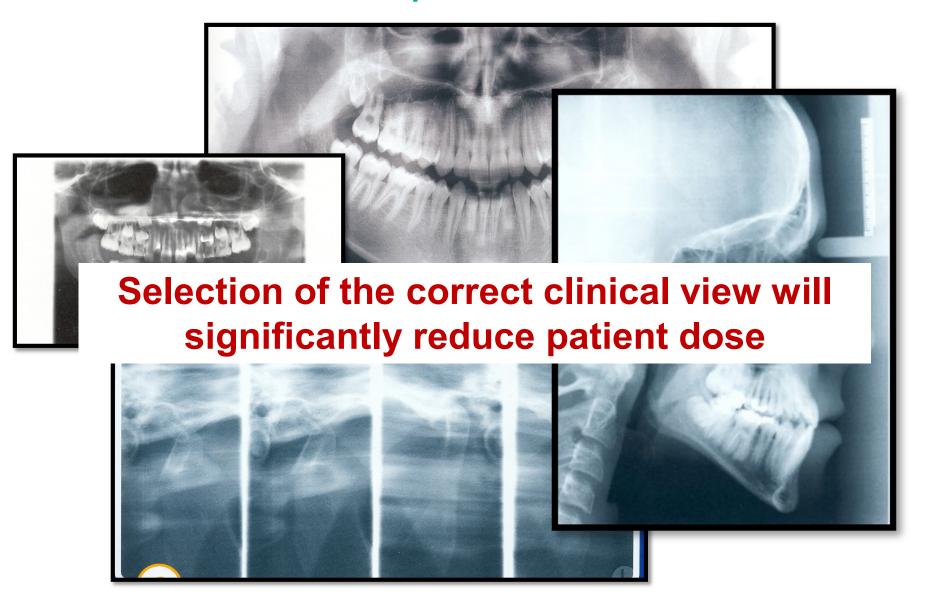
Intra oral: selection of exposure settings

Operating potential

 using 70 kV rather than 60 kV results in about 25% less patient dose

Tube current (mA) and exposure time must be well-matched to:

- the imaging system used
- anatomical view
- patient size



Intra oral: hand-held X-ray sets

Panoramic and cephalometric: collimation

Panoramic and cephalometric: positioning

Panoramic: effect of imaging system

Imaging system	3 rd quartile dose area product, mGy cm ^{2*†}
Film	82
CR	80
DR	81

† Source: PHE-CRCE-59: Dose to patients from dental radiographic X-ray imaging procedures in the UK - 2017 review

^{*}The patient doses were measured at the settings normally used for an standard adult panoramic radiograph

Cephalometric: effect of imaging system

Imaging system	3 rd quartile dose area product, mGy cm ^{2*†}
Film	39
CR	46
DR - static	69
DR - scanning	23

† Source: PHE-CRCE-59: Dose to patients from dental radiographic X-ray imaging procedures in the UK - 2017 review

^{*}The patient doses were measured at the settings normally used for an adult lateral cephalometric radiograph

Dental CBCT: collimation

- Only the region of clinical interest should be imaged
- The whole imaged volume should be reported on
- Dentists may not report on anatomy outside the dentoalveolar region (without additional training)

Selection of the correct clinical view will significantly reduce patient dose

Dental CBCT: other factors

As for panoramic and cephalometric equipment

- Patient preparation
- Patient positioning including use of scout views
- Patient instructions
- Correct exposure factors (patient size etc)

Other factors that could reduce patient dose for dental CBCT

- Use lower exposure factors where possible (mA, time, voxel size, resolution settings)
- Partial rotation scans
- Partial volume reconstructions (to omit artefacts caused by metallic restorations etc)

For more information on optimising patient doses in dental CBCT, please refer to chapter 4 of the Dental GNs

Optimisation of patient dose – all equipment

And don't forget these, which also support optimisation:

- Routine checks on condition of X-ray equipment (arm counterweights, tubehead etc)
- Servicing as per manufacturer's recommendations
- Routine performance tests on X-ray equipment
- Compliance with any local or national DRLs
- QA for digital equipment (plates, sensors, readers, display screens)
- QA for film processing, darkrooms, lightboxes
- QA of viewing conditions