Development of Clinically Informing application using Recurrent Neural Network (CIReNN) based on Common Data Model

Background: Importance of Temporal Patterns in Medical Data

Patient A

	Risk factor
Age	50
Sex	М
DM (condition)	1
Metformin (drug)	1
Sulfonylurea (drug)	1
Insulin (drug)	1

Patient B

	Risk factor
Age	50
Sex	М
DM (condition)	1
Metformin (drug)	1
Sulfonylurea (drug)	1
Insulin (drug)	1

Background: Importance of Temporal Patterns in Medical Data

Patient A

	2002	2003	2004	2005	2006
Age	50	51	52	53	54
Sex	М	М	М	М	М
DM (condition)	6	5	4	4	3
Metformin (drug)	300	360	360	360	320
Sulfonylurea (drug)	0	0	0	0	1
Insulin (drug)	0	0	0	0	1

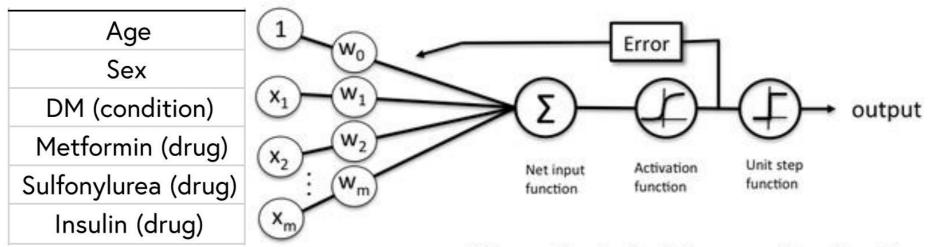
Risk factor			
50			
М			
1			
1			
1			
1			

Patient	E
----------------	---

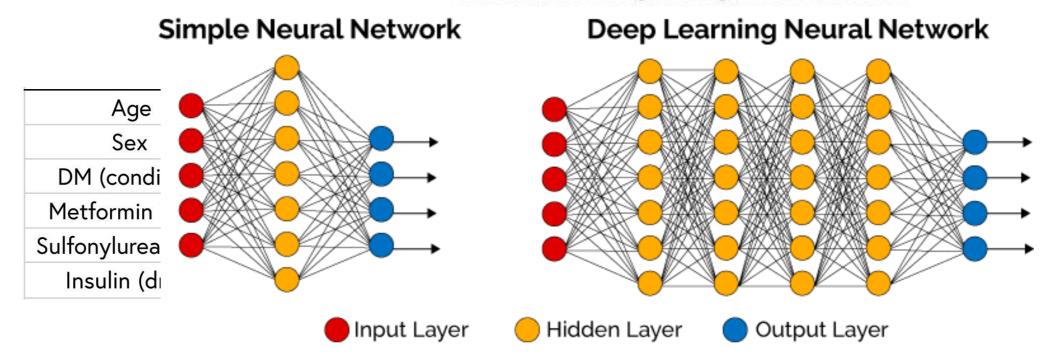
	2002	2003	2004	2005	2006
Age	50	51	52	53	54
Sex	М	М	М	М	М
DM (condition)	7	1	2	7	15
Metformin (drug)	360	10	60	150	0
Sulfonylurea (drug)	0	0	90	120	0
Insulin (drug)	0	0	0	0	360

Risk factor
50
М
1
1
1
1

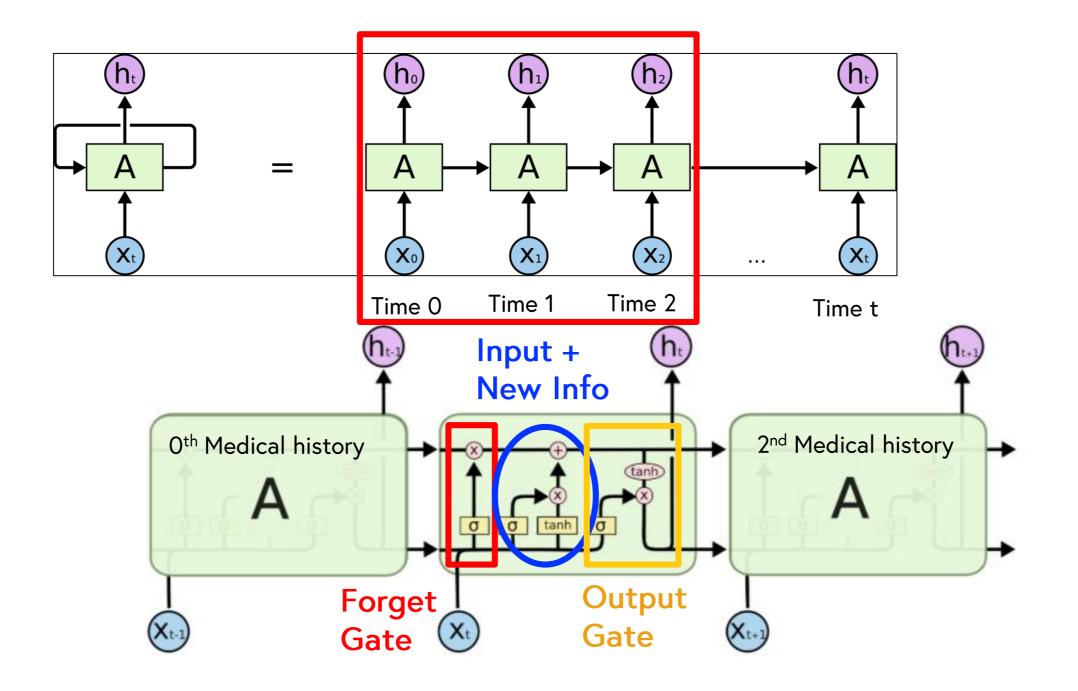
Background: Deep Learning for EHR



Schematic of a logistic regression classifier.



Background: Recurrent Neural Network



Background: Deep Learning for EHR and Challenges

npj | Digital Medicine

www.nature.com/npjdigitalmed

ARTICLE OPEN

Scalable and accurate deep learning with electronic health records

- It is widely held that 80% of the effort in an analytic model is preprocessing, merging, customizing, and cleaning datasets, not analyzing them for insights. This profoundly limits the scalability of predictive models
- The number of potential predictor variables in the electronic health record (EHR) may easily number in the thousands

Purpose

- To build a predictive model based on a recurrent neural network by using temporal features extracted from OMOP-CDM database: CIReNN (Clinically Informing application based on Recurrent Neural Network)
- CIReNN is expected to facilitate prediction of important clinical events by analyzing flexible and temporal relationships in health care data

Method: Data Representation

- User-defined time span based data representation
 - Regular number of time step
 - Represent the length of time and acuity/chronicity
 - Can be applied to medical data with both long-term and short-term observation period

```
N-dimensional vectors

Time span 1 (-1800~1770 day): Fever, Cough[condition], Tylenol[drug] [1,1,0,0,0,...0,0,1,0]

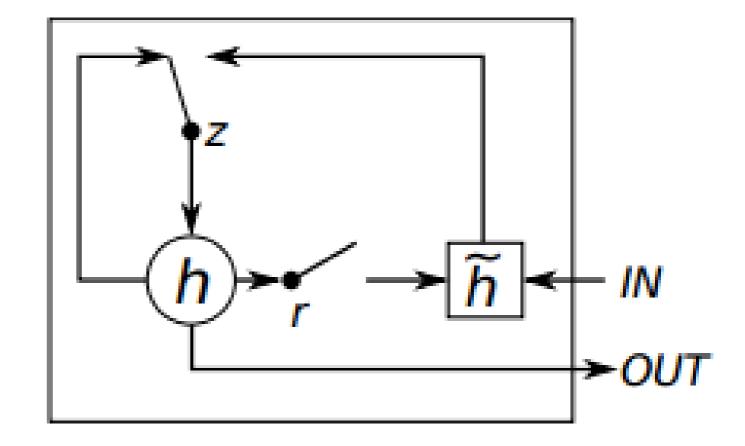
Time span 2 (-1770~1740 day): Pneumonia [condition], Tylenol, Amoxicillin[drug] [0,0,1,0,0,...0,0,1,1]

...

Time span 50 (-30~ index day): Diabetes mellitus [condition], Insulin[drug] [0,0,0,1,0,...0,0,1,1]
```

Method: Deep Learning Model

- GRU layer
 - 1 layer
 - Keras with tensorflow backend in R
- Prediction layer
 - Optimizer: RMSprop
 - Loss: Cross-entropy
- For efficiency
 - Sparse array
 - Batch generator
 - Early stopping based on loss of validation set
- Sensitivity vs Specificity
 - Outcome weight
- Greedy search algorithm with n-fold cross-validation for optimal hyper-parameter



(b) Gated Recurrent Unit

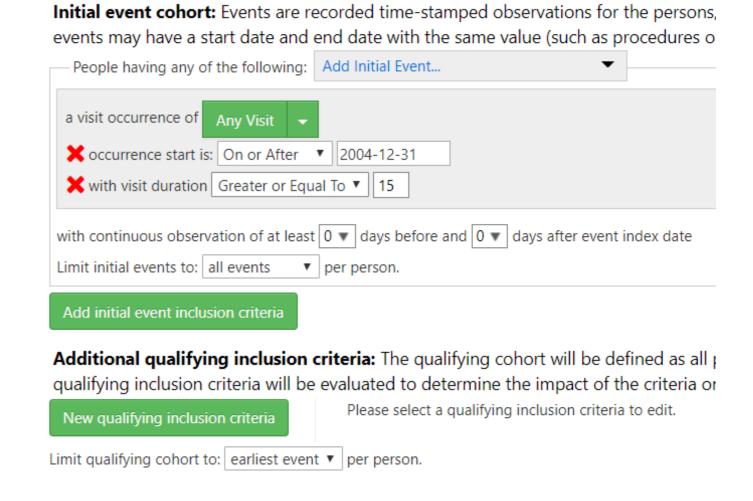
Method: Whole Process of Prediction in OHDSI Ecosystem

Create Target & Outcome Cohort	ATLAS
Database Connections	DatabaseConnector
Select and Extract Temporal Predictor Variables	FeatureExtraction
Develop RNN model & internal validation	PatientLevelPrediction CIReNN
Model evaluation and internal validation	PatientLevelPrediction
External validation	OHDSI network

Create Target & Outcome Cohort

ATLAS

- Target cohort
 - Inpatient from 1st Jan 2005
 - At least 15 days of hospitalized
- Outcome cohort
 - All-cause mortality within 14 days



Select and Extract Temporal Predictor Variables

FeatureExtraction

```
useDemographicsRace = TRUE,
```

- Time span
 - Risk window: 3 years + 14 days
 - Time span interval : 3-year + 2 days

```
createTemporalCovariateSettings(useDemographicsGender = TRUE,
                                useDemographicsAge = TRUE,
                                useDemographicsIndexYear = TRUE,
                                useDemographicsIndexMonth = TRUE,
                                useConditionOccurrence = TRUE,
                                useDrugExposure = TRUE,
                                useDrugEraGroupStart = TRUE,
                                useProcedureOccurrence = TRUE,
                                useMeasurement = TRUE,
                                useMeasurementValue = TRUE,
                                useVisitCount = TRUE,
                                temporalStartDays = startDays,
                                temporalEndDays = endDays)
```

Develop RNN model & internal validation

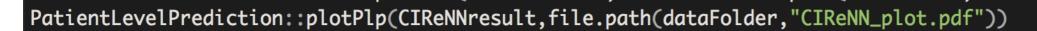
PatientLevelPrediction CIReNN

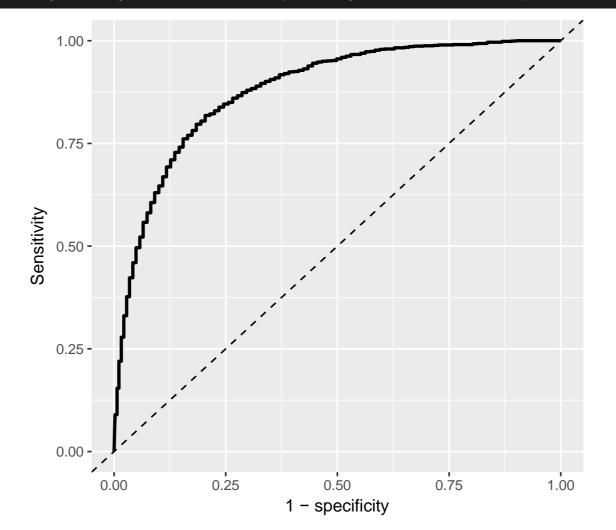
Model evaluation and internal validation

- Target population: 56,811
- Outcome cases: 5,189 (9.1%)
- 20% test and 80% train, 5-fold cross-validation
- AUROC
 - In train: 0.92
 - In test: 0.88

Model evaluation and internal validation

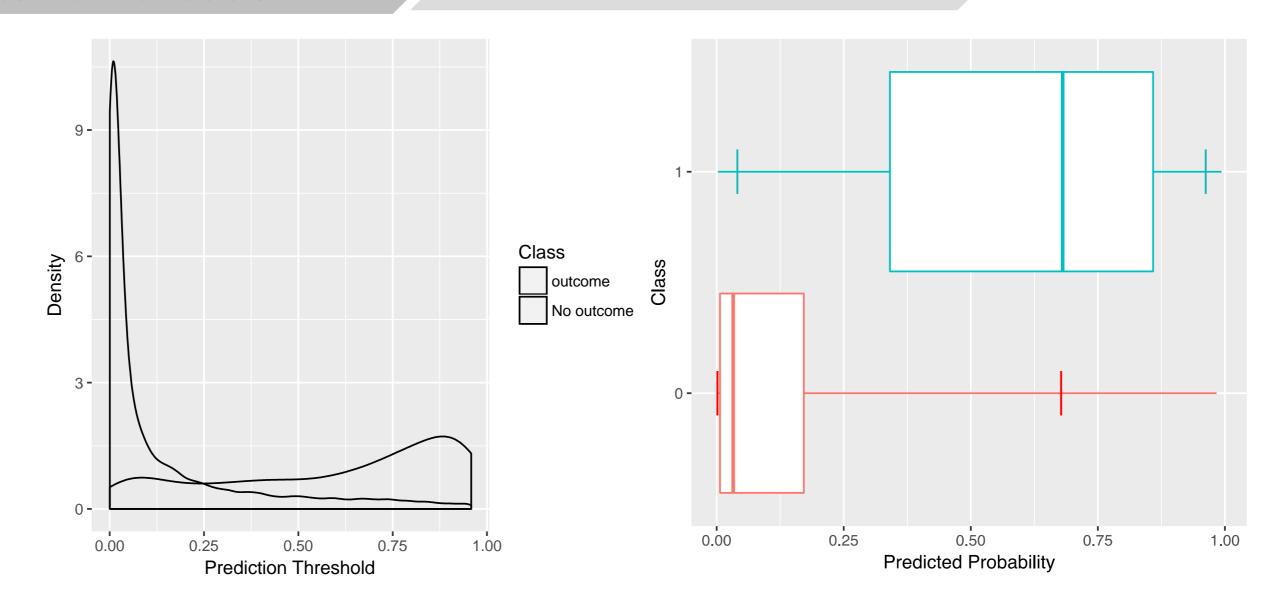
PatientLevelPrediction



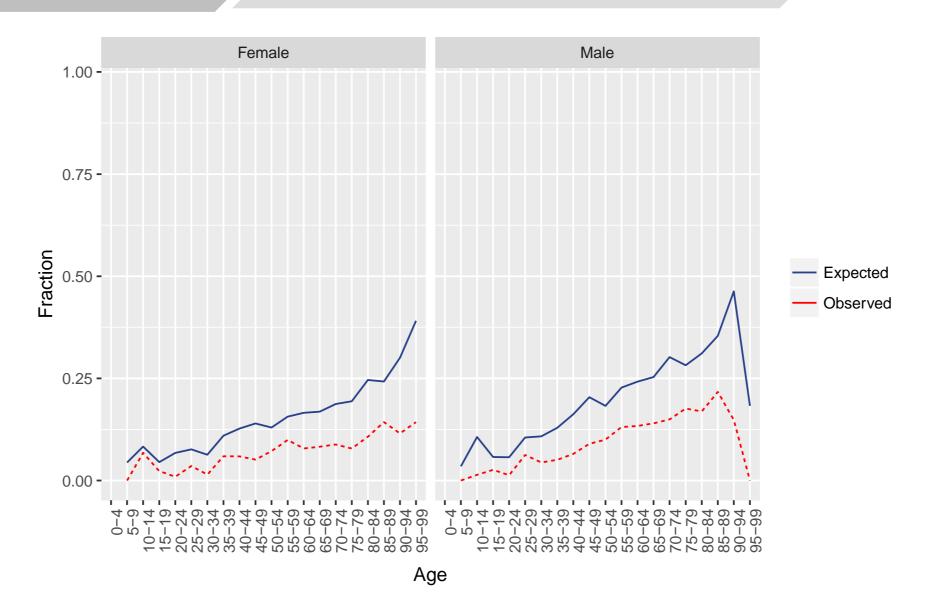


AUROC: 0.88

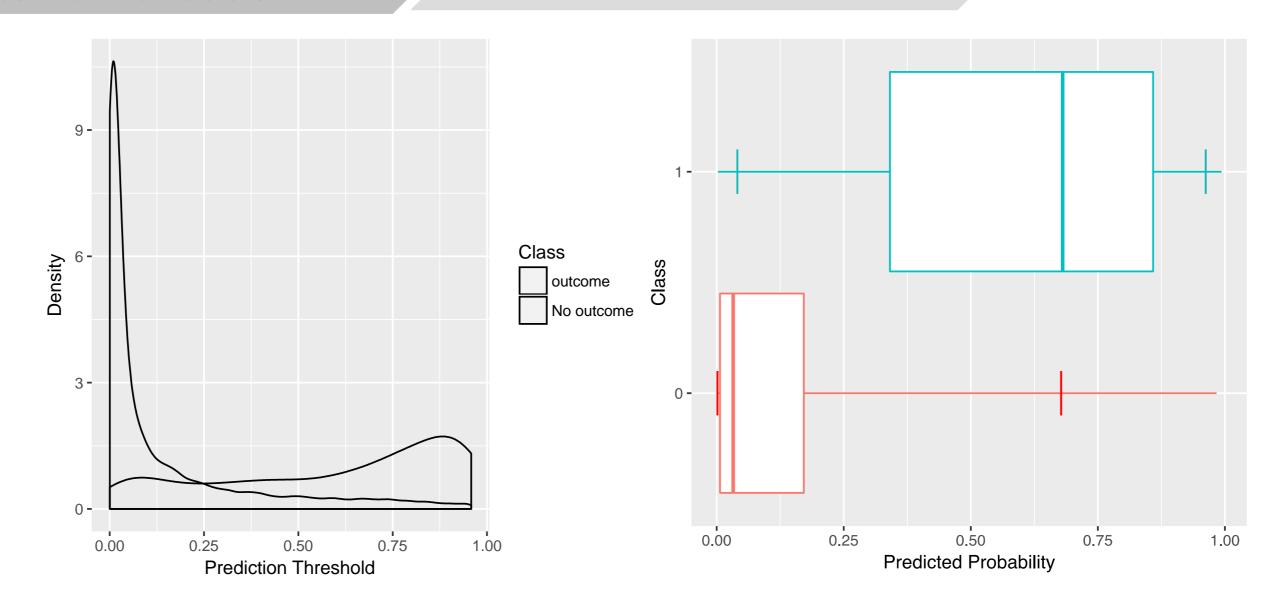
Model evaluation and internal validation



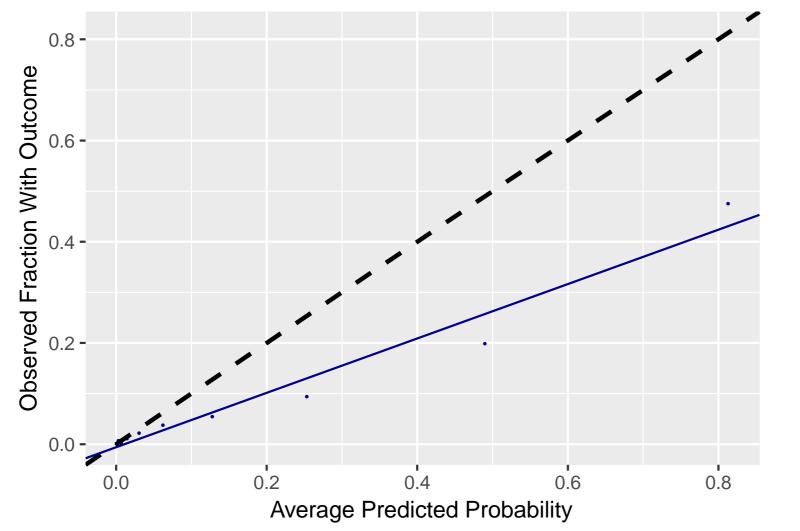
Model evaluation and internal validation



Model evaluation and internal validation



Model evaluation and internal validation



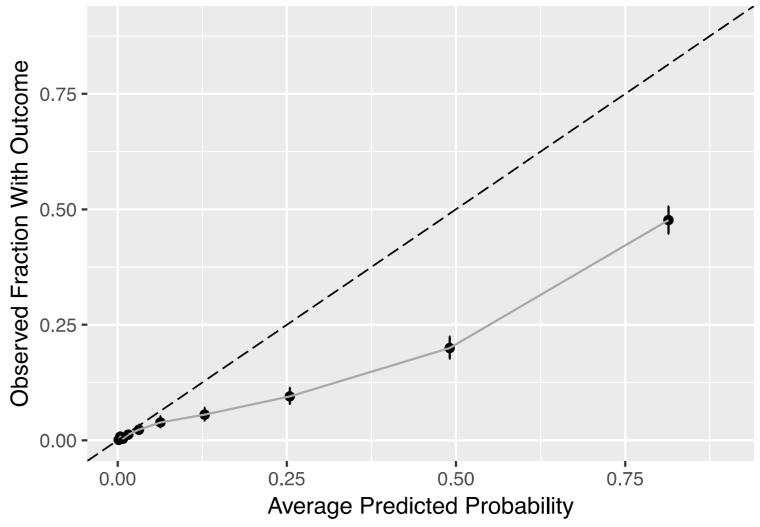


Image Sources

- Vázquez F. Deep Learning made easy with Deep Cognition. 2017. https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351.
- Ma J. All of Recurrent Neural Networks [Internet]. Medium. 2016. Available from: https://medium.com/@jianqiangma/all-about-recurrent-neural-networks-9e5ae2936f6e

References

- Choi E, Schuetz A, Stewart W, Sun J. Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association. 2017;:ocw112.
- Rajkomar A, Oren E, Chen K, Dai A, Hajaj N, Hardt M et al. Scalable and accurate deep learning with electronic health records. npj Digital Medicine. 2018;1(1).
- Chung, J., Ahn, S., & Bengio, Y. (2016). Hierarchical multiscale recurrent neural networks. arXiv preprint arXiv:1609.01704.